热门搜索:

  • /?68
  • 下载费用:20 金币 ?

汽车防抱死制动系统设计论文.pdf

关?键?词:
汽车 抱死 制动 系统 设计 论文
资源描述:
河南理工大学 2012届本科毕业设计(论文) - 1 -摘要 防抱死制动控制系统(ABS)是在传统制动系统的基础上采用智能控制技术,在制动 时自动调节制动力防止车轮抱死,充分利用道路附着力,提高制动方向稳定性和操纵稳 定性,从而获得最大制动力且缩短制动距离,尽可能地避免交通事故发生的机电一体化 安全装置。 本文根据防抱死制动控制系统的工作原理, 应用汽车单轮运动的力学模型,分析了制 动过程中的运动情况。采用基于车轮滑移率的防抱控制理论,根据车速、轮速来计算车 轮滑移率。以MSP430F149单片机为核心,完成了输入电路、输出驱动电路及故障诊断等 电路设计,阐述了ABS系统软件各功能模块的设计思想和实现方法,完成了ABS检测软 件、控制软件的设计。 课题所完成的汽车防抱死制动控制系统己通过模拟试验台的基本性能试验,结果表 明: 汽车防抱死制动控制系统的硬件电路设计合理可行,软件所采用的控制策略正确、 有效,系统运行稳定可靠,改善了汽车制动系统性能,基本能够满足汽车安全制动的需 要。 本文对汽车防抱死制动系统进行了数学建模,并在Matlab/Simulink 的环境下,对 汽车常规制动系统和基于 PID 控制器的防抱死制动系统的制动过程进行了仿真, 通过对 比分析,验证了基于PID 控制器的汽车防抱死制动系统具有良好的制动性能和方向操纵 性。 关键词: 防抱死制动系统 (ABS) ;滑移率;控制策略;单片机;建模;仿真; 第一章 绪论 1.1 防抱死制动系统概述 1.1.1 防抱死制动系统的产生 当汽车以较高的车速在表面潮湿或有冰雪的路面上紧急制动时, 很可能会出现这样河南理工大学 2012届本科毕业设计(论文) - 2 - 一些危险的情况:车尾在制动的过程中偏离行进的方向,严重的时候会出现汽车旋转掉 头,汽车失去方向稳定性,这种现象称为侧滑;另一种情况是在制动过程中驾驶员控制 不了汽车的行驶方向,即汽车失去方向可操纵性,若在弯道制动,汽车会沿路边滑出或 闯入对面车道, 即便是直线制动, 也会因为失去对方向的控制而无法避让对面的障碍物。 产生这些危险状况的原因在于汽车的车轮在制动过程中产生抱死现象,此时,车轮相对 于路面的运动不再是滚动,而是滑动,路面作用在轮胎上的侧滑摩擦力和纵向制动力变 得很小,路面越滑,车轮越容易出现抱死现象;同时汽车制动的初速度越高,车轮抱死 所产生的危险性也越大。这将导致汽车可能会出现下面三种情况: ① 制动距离变长 ② 方向稳定性变差,出现侧滑现象,严重时出现旋转掉头 ③ 方向操纵性丧失,驾驶员不能控制汽车的行驶方向 防抱死制动系统ABS(Anti-lock Braking System) 是一种主动安全装置,它在制 动过程中根据 “车辆一路面”状况, 采用电子控制方式自动调节车轮的制动力矩来达到 防止车轮抱死的目的。即在汽车制动时使车轮的纵向处于附着系数的峰值,同时使其侧 向也保持着较高的附着系数,防止车轮抱死滑拖,提高制动过程中的方向稳定性、转向 控制能力和缩短制动距离,使制动更为安全有效。 随着汽车行驶速度的提高、道路行车密度的增大、以及人们对汽车行驶安全性的要 求越来越高,汽车行驶的安全性理所当然是最应受到关注的问题。 影响汽车安全性的因 素很多,诸如汽车的制动性、操纵性、行驶的稳定性、 抵御外界影响(碰撞、 擦挂等) 的能力等都影响汽车的安全性。统计资料显示,在道路交通事故中,大约10%的事故是由 于车辆在制动瞬间偏离预定轨道或甩尾造成的.因此完善制动性能是减少交通事故的重 要措施。 汽车行驶时能在短距离内停车且维持行驶方向稳定性和在下长坡时能维持一定车速 的能力称为汽车的制动性。汽车的制动性还应包括汽车能在一定坡度的坡道上长时间停 车不动的性能. 汽车的制动性主要由下列三个方面来评价: 1. 制动效能 在一定车速行驶时,采取制动措施后能使之停下的距离己相应的制动减速制动距离 越短,越有利于避免交通事故的发生,它是制动性最基本的评价指标 河南理工大学 2012届本科毕业设计(论文) - 3 - 2. 制动时汽车的方向稳定性 汽车制动时,维持原有的行驶方向,不发生跑偏,侧滑,性能。汽车制动过程中, 失去方向稳定性和失去转向控制能力 。 3. 制动效能的恒定性 汽车在连续多次制动或涉水后仍具备必要的制动功能的能力,即抗衰退性。抗衰退 性是指汽车在繁重工作条件下制动时 (如下长坡时长时间连续制动) , 制动器温度升高后, 其制动效能的保持程度。它是设计制动器及选材中必须认真考虑的一个重要问题。 以上三项指标中,前两项指标采用 ABS装置后,其性能都会有明显的改善和提高, 对避免交通事故的发生能起到很好的作用,因此 ABS 是汽车上十分重要的主动安全装 置。 1.1.2 防抱死制动系统的优点 ABS与常规制动系统相比,有以下优点: 1. 改善制动效能.这是因为在同样紧急制动情况下,ABS系统可以将滑移率控制 在20%左右,充分利用纵向峰值附着系数和较大的侧向附着系数,使车轮和地面间产生最 大的地面制动力,缩短了制动距离。 2. 改善汽车制动时的方向稳定性。汽车制动时,四个轮子的制动力是不一样的。 如果汽车的前轮抱死滑拖,驾驶员就无法控制汽车的行驶方向,汽车就失去了转向操纵 能力,只能按惯性力的方向运行,无法避开行人和障碍物:若后轮先抱死,则会出现侧 滑、甩尾,甚至使汽车整个调头等严重事故。 3. 改善汽车制动时的横向稳定性.如果车轮抱死,横向附着系数(也称侧向附着 系数)就非常小,汽车极易侧滑。ABS 把滑移率控制在8%~25%之间,横向附着系数较大, 有足够的抵抗横向千扰的能力。 4. 改善车轮的磨损状况。汽车车轮抱死滑拖会造成轮胎局部杯型磨损,轮胎面磨 损也会不均匀,使轮胎磨损消耗增加。经测定,汽车在紧急制动时,车轮抱死所造成的 轮胎累加磨损费,己超过一套防抱死制动系统的造价,缩短轮胎的使用寿命,ABS 系统 可以防止这种情况出现。 5.减轻驾驶员的劳动强度,减少驾驶员紧张情绪,提高了乘客的乘坐舒适性和安 全性。 6.使用方便,工作可靠,维修简便。制动时只要把脚踏在制动踏板上,ABS 系统河南理工大学 2012届本科毕业设计(论文) - 4 - 就会根据情况自动进入工作状态,如遇雨雪路滑,驾驶员也没有必要用一连串的点刹车 方式进行制动,ABS 系统会使制动状态保持在最佳点。如果发现系统有故障,就会自动 恢复为常规制动状态。 1.2 防抱死制动系统的发展历史 ABS发展至今,其发展史大致可划分为三个阶段。 20世纪30年代至50年代,这一时期是 ABS 诞生和初步发展的时期。 制动防抱死系 统最初不是用在汽车上,而是首先用在铁路机车上,以防止火车车轮制动抱死后在钢轨 上滑行使制动距离延长,同时造成局部摩擦,致使车轮、钢轨早期损坏和车轮不能平稳 旋转而产生噪声和振动。随后又应用于飞机上,以防止飞机着陆后制动跑偏、 甩尾和轮 胎剧烈磨损,缩短滑行距离。在30年代机械式防抱死制动系统就开始在飞机上获得应用。 由于飞机对制动时的方向稳定性要求高,而 ABS 的价格占飞机总价格比例较小,机场的 场面条件简单,尾部机轮可以精确测量机速,从而可获得正确的滑移率,实现精确控制 等一系列有利条件,使 ABS在飞机上的应用取得成功,普及率很快上升,并很快成为飞 机上的标准装备。 汽车上使用 ABS始于20世纪50年代,福特汽车公司首先将它装配在汽车上,这开创 了汽车使用 ABS的先河。1969年,林肯大陆牌III型汽车安装了由凯。海斯研制成功的 奥托一林纳防抱死装置。装在后轮上的传感器能发送讯号到杂物箱后面的计算机,当传 感器向计算机发出制动器将要抱死讯号时,计算机便控制制动管路上的真空操纵阀,以 降低后制动器的油压。 装用 ABS的轿车在光滑路面制动时确实提高了其稳定性,但在不好路面上制动,其 制动距离较一般制动系的汽车长,加上ABS的体积、质量大,价格高,销路很有限。 制 动厂家终于在70代中期停止了ABS汽车的生产。由于科学技术的发展,欧洲随后研制成 由数字计算机组成的较为现代型的 ABS。数字计算机不易受干扰,速度快,可以把降低 增加制动液压循环的次数增加到每秒十余次。其速度完全可以与数字计算机处理数据的 速度相匹配。这种较为现代的ABS体积小、质量轻、动作更快、更准确。 波许公司在 20世纪 60年代初就开始ABS的开发工作,于 1978年正式生产出ABS1 型汽车防抱死制动系统,以后相继开发出将汽车防抱死制动系统与驱动力自动调节装置 有机结合的 ABS/ASR 系统。该公司于 1975年研制出部分集成模拟信号处理的第一代 ABS 产品,以后又相继研制出全数字化和高度集成化的 ABS 产品,并将微机控制用于制河南理工大学 2012届本科毕业设计(论文) - 5 - 动系统中。德国的坦威斯公司 (TEVES)于1984 年首次推出了整体式 ABS— 坦威斯 MK11 ,该系统将防抱死制动压力调节装置与制动主缸和液压制动助力器组合为一个整 体,而在该系统出现以前,所有的ABS都是将制动压力调节装置作为一个单独的整体, 附加在常规的制动系统中,即采用的都是分离式结构。 20世纪30-50年代, 西方国家研制出纯机械式的ABS并少量装备于汽车。 到了60年代, 模拟电子技术在 ABS上开始使用,但因成本太高,可靠性也不稳定,未能在汽车上广泛 使用。70年代后期出现了数字式电子控制的 ABS,从而揭开了现代 ABS 大发展的序幕。 通过数字化和集成化,使ABS的组件数目大大减少,降低了成本,提高了可靠性,欧、 美、日的汽车公司逐步在汽车上装备了 ABS。进入70年代后,随着电子技术的进步,数 字电子技术、大规模集成电路的发展和微机的运用,电子控制式ABS日趋成熟,成本不 断降低,并且体积小、质量轻、控制精度高,其安全效能十分显着,普遍受到人们的欢 迎和认可,为其迅速普及创造了条件。20世纪80年代ABS向着提高效能成本比的方向发 展,是汽车 ABS 研制生产应用迅速发展的阶段,加之法规的推动作用,ABS 已成为汽车 上标准装备或选择装备。 1.3 防抱死制动系统的发展趋势 1. ABS本身控制技术的提高。 现代制动防抱死装置多是电子计算机控制,这也反映了现代汽车制动系向电子化方 向发展。 基于滑移率的控制算法容易实现连续控制,且有十分明确的理论加以指导,但 目前制约其发展的瓶颈主要是实现的成本问题。 随着体积更小、价格更便宜、可靠性更 高的车速传感器的出现,ABS 系统中增加车速传感器成为可能,确定车轮滑移率将变得 准确而快速。 全电制动控制系统BBW(Brake-By-Wire)是未来制动控制系统的发展方向之一。它不 同于传统的制动系统,其传递的是电,而不是液压油或压缩空气,可以省略许多管路和 传感器,缩短制动反应时间,维护简单,易于改进,为未来的车辆智能控制提供条件。 但是,它还有不少问题需要解决,如驱动能源问题,控制系统失效处理,抗干扰处理等。 目前电制动系统首先用在混合动力制动系统车辆上,采用液压制动和电制动两种制动系 统。 2. 防滑控制系统 防滑控制系统 ASR(Acceleration Slip Regulation)或称为牵引力控制系统河南理工大学 2012届本科毕业设计(论文) - 6 - TCS(Traction Contro System)是驱动时防止车轮打滑,使车轮获得最大限度的驱动力, 并具有行驶稳定性,减少轮胎磨损和发动机的功耗,增加有效的驱动牵引力。防滑控制 系统包括两部分:制动防滑与发动机牵引力控制。制动部分是当驱动轮(后轮)在低附 着系数路面工作时,由于驱动力过大,则产生打滑,当ASR制动部分工作时,通过传感 器将非驱动轮及驱动轮的轮速信号采集到控制器中,控制器根据轮速信号计算出驱动车 轮滑移率及车轮减、加速度,当滑移率或减、加速度超过某一设定阀值时,则控制器打 开开关阀,气压由储气筒直接进入制动气室进行制动,由于三通单向阀的作用气压只能 进入打滑驱动轮的制动气室,在低附着系数路面上制动时,轮速对压力十分敏感,压力 稍稍过大,车轮就会抱死。为此利用ABS电磁阀对制动压力进行精细的调节,即用小步 长增压或减压,以达到最佳的车轮滑移的效果既可以得到最大驱动力,也可保持行驶的 稳定性。 3. 电子控制制动系统 由于ASS在功能方面存在许多缺陷,如气压系统的滞后,主车与接车制动相容性问题 等。为改善这些,出现了电子制动控制系统 EBS(Electronics Break System)它是将气 压传动改为电线传动,缩短了制动响应时间。最重要的特点是各个车轮上制动力可以独 立控制。 控制强度则由司机踏板位移信号的大小来决定,由压力调节阀、气压传感器及 控制器构成闭环的连续压力控制,这样可以在外环形成一个控制回路,来实现各种控制 功能,如制动力分布控制、减速控制、牵引车与挂车处祸合力控制等。 4.车辆动力学控制系统 车辆动力学控制系统VDC(Vehicle Dynamics Control)是在ABS的基础上通过测量方 向盘转角、横摆角速度和侧向加速度对车辆的运动状态进行控制。VDC 系统根据转向角、 油门、制动压力,通过观测器决定出车辆应具有的名义运动状态。同时由轮速、横摆角 速度和侧向加速度传感器测出车辆的实际运动状态。名义状态与实际状态的差值即为控 制的状态变量,控制的目的就是使这种差值达到最小,实现的方法则是利用车轮滑移率 特性。车辆动力学控制系统目的是改善车辆操纵的稳定性,它可以在车辆运动状态处于 危险状态下自动进行控制。其主要作用就是通过控制车辆的横向运动状态,使车辆处于 稳定的运动状态,使人能够更容易地操纵车辆。 5. 控制系统总线技术 随着汽车技术科技含量的不断增加,必然造成庞大的布线系统。因此,需要采用总河南理工大学 2012届本科毕业设计(论文) - 7 - 线结构将各个系统联系起来,实现数据和资源信息实时共享,并可以减少传感器数量, 从而降低整车成本,朝着系统集成化的方向发展。 目前多使用 CAN 控制器局域网络 (Controller Area Network)用于汽车内部测量与执行部件之间的数据通信协议。 1.4 国内防抱死制动系统的研究和应用概况 我国ABS的研究始于20世纪80年代初,现刚刚进入产品试制和装车试验阶段。 随着 我国市场经济的不断发展及汽车保有量和车速的不断提高,行车安全问题变得越来越突 出。ABS 系统的研究在我国成为热门课题,许多高校、科研单位和生产厂家正在加快研 究攻关和技术引进步伐。国内研制ABS的单位主要有东风汽车公司、交通部重庆公路研 究所、重庆宏安ABS有限公司、陕西兴平514厂、西安公路学院、清华大学、西安艾韦机 电科技公司等单位和部门。 东风公司从80年代初就开始研究 ABS,是较早研究ABS的厂 家之一,现研究工作的主要目标是对国外的产品进行消化吸收。 重庆公路研究所相继开 发出了两代 ABS产品, 第一代 ABS的ECU采用了Z80芯片。 第二代ABS产品为 FKX-ACI 型, 该装置的ECU中的CPU微处理器采用了美国工NTEL公司的MCS-96系列8098单片机。 我国目前己着手制定有关车辆安全性方面的法规,并决定首先在重型汽车和大客车上安 装ABS系统。 从 1998年起,国产的奥迪、桑塔纳和富康等轿车,己普遍装上了ABS. 1.5 主要研究工作 根据西安艾韦机电科技公司提出的具体要求,给出了相应的ABS设计方案,并进行 了初步试验,理论和试验结果都表明,此设计方案能够将汽车在制动时车轮的滑移率限 制在一定范围之内,避免车轮抱死,满足了控制要求。 第二章首先给出了汽车防抱死系统工作原理,分析了 ABS 制动系统的特点、附着系 数与滑移率的关系曲线: 通过本章对ABS制动系统主要组成部分的原理和模型进行的研 究,对ASS的工作原理有一个初步的了解。 第三章对防抱死制动系统 ASS 的电子控制单元 ECU 的硬件电路和故障诊断电路进行 了设计。对所选用的器件和电路进行了分析。实践表明,控制电路能够满足ABS的实时 性控制要求,故障诊断电路能够准确的检测出元器件故障,为维修人员提供便利。 第四章对 “PID控制方式’,“最优化控制方式”、“滑模变结构控制方式”和 “基于门限值的控制策略”等进行了比较与研究,最终采用基于车轮角加、减速度和滑 移率门限值的控制策略,该设计方案能够满足设计精度要求,并且设计成本较低。本章 对该控制策略进行了深入研究,给出了控制系统流程图,并在模拟试验台上进行了试验。 河南理工大学 2012届本科毕业设计(论文) - 8 - 第五章对研究工作进行了总结,并展望了汽车ABS制动系统发展方向 。 第二章 防抱死制动系统基本原理 ABS系统能够通过控制制动过程中车轮的运动状态,使车轮不产生抱死,保证汽车制 动时处于最佳的制动状态,即保持方向稳定性、方向操纵性和缩短制动距离。所以,要 对 ABS 系统进行研究,就必须先了解汽车制动时的制动特性。 2.1 制动时汽车的运动 2.1.1 制动时汽车受力分析 汽车在制动的过程中主要受到地面给汽车的作用力、风的阻力和自身重力的作用。 地面对汽车的作用力又分为: 作用在车轮上垂直于地面的支承力和作用在车轮上平行于 地面的力。汽车在直线行驶并受横向外界干扰力作用和汽车转弯时所受到地面给汽车的 力如图2-1所示。其中 F:为地面作用在每个车轮上的地面制动力,他的大小决定于路 面的纵向附着系数和车轮所受的载荷。 所有车轮上所受地面制动力的总和作为地面给汽 车的总的地面制动力,他是使汽车在制动时减速并停止的主要作用力。Fy 为地面作用 在每个车轮上的侧滑摩擦力, 侧滑摩擦力的大小取决于侧向附着系数和车轮所受的载荷, 当车轮抱死时,侧滑摩擦力将变得很小,几乎为零。汽车直线制动时,若受到横向干扰 力的作用,如横向风力或路面不平, 汽车将产生侧滑摩擦力来保持汽车的直线行驶方向, 如图2-1(a) 所示。 若汽车在转弯时制动或在制动时转弯,也将产生侧滑摩 河南理工大学 2012届本科毕业设计(论文) - 9 -图2-1汽车直线和转弯制动时的平面受力简图 擦力使汽车能够转向,如图2-1(b)所示。 地面制动力决定制动距离的长短,侧滑 摩擦力则决定了汽车制动时的方向稳定性。 这里将作用在前轮上的侧滑摩擦力称为转弯 力, 将作用在后轮上的侧滑摩擦力称为侧向力。 转弯力和汽车的方向操纵性有关, 它 保证了汽车能够按照驾驶员的意愿转向;侧向力和汽车的方向稳定性有关, 它保证了汽 车的行进方向。转弯力越大,汽车的方向操纵性越好;侧向力越大,汽车的方向稳定性 越好。 如上所述,施加适当的制动,能够有效地使汽车停下。制动强度过大,是汽车发生 各种危险运动状况的主要原因。因此,汽车行驶时,要根据冰路、雪路、砂石路、坏路、 水湿路 干路、直路、弯曲路等道路条件,根据汽车速度、方向转角等行驶条件进行制动 操作, 必须时常注意不能让车轮完全抱死。 2.1.2 车轮抱死时汽车运动情况 车轮抱死时汽车所受到的侧滑摩擦力将会变的很小,这将使汽车制动时保持方向操 纵性和方向稳定性的转弯力和侧向力变的很小,使汽车在制动时出现一些危险的运动情 况。对ABS系统来说,就是要防止这些危险情况的出现。下面从汽车在一种路面上直线 和转弯制动两方面简单讨论一下当车轮抱死时汽车的运动情况。 1. 汽车在一种路面上直线运动制动车轮抱死时可能出现的运动情况如图2-2所示。 图2-2(a)为只有前轮抱死时,由于前轮的转弯力基本为零,无法进行正常的转向操作。 为制动时前轮全部抱死而后轮不抱死汽车的运动情况示意,当前轮抱死时转弯力为零, 驾驶员无法控制汽车的方向使汽车转向来避让前方的障碍物, 这时由于汽车后轮不抱死, 所以汽车仍具有侧向力来维持方向稳定性。 图2-2(b) 为只有后轮抱死时,后轮的侧 向力接近于零,汽车仍具有方向操纵性,但会因后轮抱死而失去方向稳定性使汽车侧滑。 汽车不能保持原来的行驶方向,由于离心力和前轮转向力的作用,汽车将一面旋转一面 沿曲线行驶(这种运动叫外旋转)。 图2-2(c)为前后车轮全部抱死时时转弯力和侧 向力都为零,这种状态很不稳定,路面不均匀、左右轮地面制动力不相等时,即使对汽 车施加很小的偏转力矩,汽车就会产生不规则运动而处于危险状态,在不规则旋转的过河南理工大学 2012届本科毕业设计(论文) - 10 - 程中将制动释放,汽车就会沿着瞬时行驶方向急速驶出,这也是很危险的。 图2-2 汽车直线制动车轮抱死时的运动情况 2 汽车在一种路面上转弯制动车轮抱死时可能出现的运动情况如图 2-3 所示。 所有 这些运动情况若在制动时出现,都是极其危险的。 河南理工大学 2012届本科毕业设计(论文) - 11 -图2-3 汽车转弯制动车轮抱死时的运动情况 从上面对出现这些危险运动情况的简单分析可以看出,制动时车轮抱死导致汽车出 现各种危险运动情况,实质上是汽车因失去相应的维持本身方向稳定性方向操纵性的侧 滑摩擦力而使汽车出现这些运动情况,即车轮抱死导致汽车的侧滑摩擦力为零。车轮的 抱死程度和汽车的地面制动力及汽车的侧滑摩擦力之间存在一定的关系,ABS之所以能 防止汽车制动时出现危险的运动情况,就是根据这个关系来调整车轮的运动状态,以避 免侧滑摩擦力为零。 2.2 滑移率和路面附着系数的关系 制动时道路作用于车轮上的纵向附着力就等于汽车制动力。道路给予汽车转向轮的 侧向附着力就是使汽车转向的侧向力。 定义纵向附着力为F x F ,侧向附着力F y F ,车 轮的垂直载荷N,则纵向附着系数 a j 和侧向附着系数 s j 可以用下式表示: 河南理工大学 2012届本科毕业设计(论文) - 12 - N F x a F = j………………………………………(2—1) N F y s F = j…………………………………………(2—2) 汽车在制动的过程中出现车轮抱死时,车轮的运动状态并不是从旋转状态突然进入 到相对于汽车停止的抱死状态,即车轮从旋转状态进入抱死状态要经历一个过渡过程。 在此过渡过程中,车轮相对于汽车的转速慢慢降低,直至为零时车轮抱死。若以车轮抱 死时的抱死程度为最大,则在过渡过程时车轮的抱死程度就较小,在不对车轮进行制动 时,车轮抱死的程度为最小。车轮滑移程度用滑移率S表示: v r - 1 v v - v v w w = =………………………………(2—3) V: 车轮中心的速度,单位 m/s; w: 车轮制动时转速,单位 弧度/s; r: 没有地面制动力时的车轮滚动半径,单位 m: 这里 w w r v = ,车轮中心的速度V即为车速。显然,滑移率S的取值范围为0~ 1. 当不对车轮进行制动时,车轮随汽车的运动而滚动,由车轮轮速计算出的车轮中心 速度汽车速度心速度和汽车的速度大小相等,滑移率为0。若对车轮施加制动,车轮的 旋转将减速, 这时由轮速计算的车轮中心速度比车速小,使汽车开始拖动车轮使车轮中 心的速度汽车速度一样,造成乍轮相对路面产生滑动,车轮既做滚动又做滑动,滑移率 介于0和1之间。当制动增强时,车轮的转速逐渐变小,最终为零,这时汽车拖带车轮 相对于路面做纯滑动,滑移率为1。可见,滑移率能够定量表示车轮抱死的程度。 车轮滑移率和车轮的纵向及侧向附着系数之间有如图2-4所示的关系。 显然它们之 间的关系是一种非线性关系。 河南理工大学 2012届本科毕业设计(论文) - 13 - 图2-4 滑移率与附着系数的关系 滑移率为零时,纵向附着系数为零,侧向附着系数为最大。滑移率增大时,车轮与 地面之间开始出现滑动,纵向附着系数近似呈线性增长,同时侧向附着系数减小。当滑 移率继续增大时,纵向附着系数在滑移率S为20%左右时达到峰值后开始迅速减小。 达 到峰值时的纵向附着系数称为峰值附着系数,侧向附着系数继续减小。车轮抱死时,滑 移率为最大,纵向附着系数降至某一数值后不再变化,侧向附着系数在车轮抱死时几乎 为零。实质上车轮通过轮胎的胎面与地面接触,轮胎是弹性体,有很强的非线性,车轮 滑移率和附着系数之间的非线性是轮胎的非线性及轮胎与地面之间接触的非线性所造成 的。 由于制动时地面作用在车轮上的地面制动力 X F F 、 和侧滑摩擦力 y F F 与车轮的附着系 数之间存在式(2-1) 、 (2-2)所示的线性关系,所以在制动过程中汽车所受到的地面制 动力 X F F 和侧滑摩擦力 y F F ,与车轮的滑移率S之间也存在同样的非线性关系。并且,从 图2-4中纵向附着系数与车轮滑移率之间的关系还可以得出制动时车轮由转动到抱死的 过程中,地面制动力F、将会在车轮的运动状态处于滑移率S在20%左右的区域时,达到河南理工大学 2012届本科毕业设计(论文) - 14 - 一个最大值,车轮抱死时,地面制动力反而会减小,减小的程度示路面种类的不同而不 同。所以,制动时车轮抱死不仅影响到汽车制动的方向稳定性和方向操作性,还通过地 面制动力的变化影响到汽车的制动距离。 如果能在制动时把车轮的运动状态控制在车轮 滑移率S为20%左右,即在图2-4中的带状区域内,既能获得最大的纵向附着系数又能获 得较高的侧向附着系数,使得汽车具有最大的地面制动力和较大的侧滑摩擦力。 这样能 够在保证汽车的方向稳定性和操作性的前提下使汽车有更短的制动距离。这就是ABS系 统的基本控制目标。 实验证明,道路的附着系数受车轮结构、材料,道路表面形状、材料有关,不同性 质道路其附着系数变化很大。 图2-5给出了不同类型路面上滑移率一纵向附着系数之间 的关系。 图2-5 不同路面上滑移率和纵向附着系数关系 由图2-5可以看出,各种路面上的变化的总体趋势是一致的。滑移率和纵向附着系数 之间的关系曲线随路面类型的不同,出现峰值的滑移率的取值也会不一样,并且对应不 同路面类型的滑移率一纵向附着系数曲线在峰值附着系数后曲线下降的速度也不相同,河南理工大学 2012届本科毕业设计(论文) - 15 - 在干燥的路面上下降的快些,在湿滑的路面上略微有些下降。一般干燥洁净的平整水泥、 沥青路面纵向峰值附着系数高达0.8-0.9, 而冰雪路面的纵向峰值附着系数低至0.1-0.2。 如果这种差别随路面类型的不同变化比较明显,则在设计ABS系统控制方法时,就必须 考虑到随路面类型的不同而采取不同的控制目标和策略。 若汽车在同一种类型路面上制 动时的初速度不一样,车轮的纵向附着系数和滑移率之间的关系曲线也会略有不同,制 动时的车速越高,车轮的纵向附着系数越低。但在同一路面上以不同制动初速度制动时 车轮的附着系数一滑移率关系曲线不会有太大变化。 总之,对于在一种路面上制动的汽车,车轮附着系数和滑移率之间的非线性特性是 决定汽车制动性能的主要因素。 实际上,汽车的制动过程就是车轮和路面之间的一种非 线性变化过程,即车轮附着系数随车轮运动状态非线性变化的过程,所以说汽车的制动 过程是一种非线性的制动过程。制动时汽车通过制动系统改变车轮的运动状态,从而改 变车轮的滑移率,形成整个非线性的制动过程。 2.3 制动时车轮运动方程 制动过程单轮受力如图2-6所示。 图2-6 制动过程单轮受力简图 制动车轮轴荷与支撑力N平衡,该轮转动惯量J,半径r:轴心平移速度V.转动角速 度w,制动器制动力矩 Mu, 通常与车轮制动压力成正比,系数K, 则有 河南理工大学 2012届本科毕业设计(论文) - 16 - ………… (2-4) ) ( b S F F j =…………………………………………(2-5) 制动时制动力远大于空气阻力和滚动阻力, b2r b1r F F , 分别为右侧前后轮制, 汽车 初速为Vo,质量为m(重力G),质心c到前后轴距离I1 I2 ,轴距L,B质心高hg, 汽车制动减速度为 b2t b2r b1r b1t dt dv m F F F F + + + = …………………………(2-6) 前轴载荷 ) g g t v 2 1 l h d d l ( + = L G N …………………………………………(2-7) 后轴载荷 ) ( 1 2 s g t v l h d d L l G N - = …………………………………………(2-8) 制动时附加转向力矩 MS=[(Fb1t +Fb2r)-(Fb1r + Fb2r)]B =[(Fb1t -Fb1r)+(Fb2t-Fb2r)]B………………(2-9) t t 0 t v 0 d d d ò + = V V ………………………………………………(2-10) 从式 (2-4)可知,调节制动压力可以使车轮角减速度产生变化:从式(2-10) 计算制动时的瞬时车速V,可计算各车轮滑移率,从式 (2-7)(2-8)及各轴载荷可以 判断道路附着系数,并进行调节,故知ABS可以用dw/dt(角加速度)或滑移率S, 或滑移率与角加速度联合作为控制参数。 r r dt d r b b F K F M J M P - = - = = m w河南理工大学 2012届本科毕业设计(论文) - 17 - 2.4 采用防抱死制动系统的必要性 汽车直线行驶过程中,突然紧急制动,汽车车轮一下子抱死,汽车仍然向前,轮胎 和地面之间发出吓人的磨擦声,汽车最后终于停了下来。 在日常生活中,大家都可能遇 到过这种现象。 如果汽车发生交通事故,交通警察来了之后首先总是检查一下汽车制动 痕迹,判断司机在事故中是否采取了制动措施。然后再测量一下制动距离,看一看该车 制动效果好不好。当轮胎的滑移率在 8%-25%时,轮胎和她面的摩擦力(附着力)最大。 如果轮胎的滑移率过大的话,附着力反而要降低。如果司机能控制轮胎的滑移率,使其 在制动期间始终处于8%-25% 范围之内,汽车将在更短的制动距离内停车。 当汽车转向时,如果汽车紧急制动的话,和直线行驶一样会出现车轮抱死现象。 由 于车轮抱死,汽车的侧向附着力变成了零,汽车轮胎出现侧向滑动,汽车丧夫了控制方向 的能力,这是十分危险的。汽车的侧向附着力和制动力之间的关系十分紧密。在不制动的 时候,轮胎前后方向的滑动为零,这时车轮侧向附着力最大。司机踏动制动踏板,随着 制动力的加大,轮胎的滑移率增加,侧向附着力逐渐减速小。最后,当轮胎的滑移率达 到 100%时,轮胎抱死。这样汽车的侧向附着力几乎等于零。此时汽车正在转弯中,轮胎 开始出现侧向滑动。在车轮抱死之后,方向盘己经不起作用了,汽车陷入了不能控制方 向的困境,只有前轮抱死的汽车沿着直线前进最后停车,只有后轮抱死的汽车发生旋转 现象最后停车,如果前后轮都抱死的话,汽车一边转一边沿直线前进最后停车。上述各 种状态是极其危险的。为了避免发生这些现象,司机在踏动制动板时,必须谨慎从事。 在制动过程中,如果始终能使轮胎的滑移率处于 8%-25%范围之内的话,汽车将在最 短的制动距离内停车并具有良好的控制方向的能力。为了达到上述目的,要求司机在操 作时应十分精心,即踏动制动踏板使车轮抱死,然后在轮胎抱死的一瞬间放松制动踏板, 轮胎一旦开始转动再踏动制动踏板使车轮抱死,如此反复操作。 在摩擦系数小的光滑路 面上,司机在制动时都很小心,唯恐使车轮抱死,但仍很难做到,原因是司机不知道车 轮什么时候抱死。 除此之外,汽车行驶的许多条件也都在变化之中,如道路的路面状况 时时刻刻都在变化,轮胎着地状态也每时每刻各不一样,前后轮胎的载荷分配更是如此。 要完成上述制动要求确实难上加难。 当然技术熟练的司机在某种程度上能根据各种 条件合理地操作制动,如采用点制动。可是一旦遇上紧急状态,大多数人都是一脚踏死 制动踏板,使轮胎抱死为此。上述司机做不到的许多事,利用传感器就能办到。将传感河南理工大学 2012届本科毕业设计(论文) - 18 - 器的数据进行整理、判断、变成执行机构所必需的信息,这部分工作对于电脑来说是很 简单的,按照电脑的指令执行操作,这在机械结构上也不会有什么大问题。ABS 系统调 节作用到每个车轮制动缸的制动液压力,以防止无论任何时由于制动过猛而可能引起的 车轮抱死。 当不再有可能抱死车轮时, 再恢复正常压力。 使滑移率控制在一定范围之内。 这样不但提高了车辆行驶的稳定性,增强了车辆方向的可控性,而且缩短了制动距离。 2.5 防抱死制动系统的类型 I. 按控制方式分类 目前ABS采用的控制方式可分为两种:预测控制方式和模仿控制方式。模仿控制方 式是在控制过程中,记录前一控制周期— 即从制动减压到增压过程中的各种参数,再按 这些参数规定出下一控制周期的控制条件。 此中控制方式更接近理想的制动控制,它能 对制动过程中各种因素 (如路面条件、使用的档位等)的影响及时修正,在各种路面或 行驶条件下紧急制动时,使车轮滑移率的变化范围更窄。 预测控制方式是预先规定控制参数和设定值等控制条件,然后再根据检测的实际参 数与设定值进行比较,对制动过程进行控制。根据控制参数不同,采用预测控制方式的 ABS又可分为下列四种形式: (1) 以车轮减速度为控制参数的ABS。此种形式的ABS通过轮速传感器检测轮速, 并对其进行微分计算求得车轮减速度,然后与ABS电脑中预先设定的车轮减速度门限值 进行比较,根据比较结果向执行机构发出指令以增加或减小制动压力,对制动过程进行 控制。 (2) 以车轮滑移率为控制参数的 ABS。此种形式的 ABS 通过传感器检测的车速和 轮速计算求得车轮的滑移率, 然后与ABS电脑中预先设定的车轮滑移率门限值进行比较, 根据比较结果向执行机构发出指令以增加或减小制动压力,对制动过程进行控制。轮速 传感器可准确检测轮速,而准确检测车速比较困难,目前ABS中应用最多的检测车速的 方法是根据车轮速度近似计算车速。 (3) 以车轮减速度和加速度为控制参数的 ABS。此种形式的 ABS 通过轮速传感器 检测轮速,并计算求得车轮减速度和加速度,然后与ABS电脑中预先设定的车轮减速度 或加速度门限值进行比较,对制动过程进行控制。当车轮减速度超过其设定值时,ABS 电脑向执行机构发出指令以减小制动压力此后车轮将加速旋转; 当车轮加速度超过其设 定值时,ABS 电脑向执行机构发出指令增加制动压力,此后车轮将减速旋转;如此反复河南理工大学 2012届本科毕业设计(论文) - 19 - 实现ABS控制。 (4) 以车轮减速度、加速度和滑移率为控制参数的 ABS。此种控制方式的 ABS 采 用多参数控制,综合了上述三种控制方式的优点,对制动过程的控制更准确,目前多数 ABS均采用此种控制方式。 1.按 ABS的布置形式分类 ABS的布置形式是指轮速传感器的数量、 制动压力调节器控制的通道数和对各车轮 制动器压力的控制方式。 根据 ABS 中控制管路 (通道) 数和传感器数量及其控制方 式的不同,ABS可分为以下几种类型: (1) 四传感器四通道式 (四轮独立控制方式) 四传感器四通道分别控制,系统具有四个传感和四个控制通道,可对两前轮和两后 轮独立进行制动压力的控制。 这种类型的ABS系统能根据各个车轮的瞬间附着状态的需 要分别控制车轮制动器制动力矩,因此采用这种类型ABS的汽车在紧急制动时可获得最 短的制动距离和最好的操纵性。 但在不对称路面上紧急制动时,由于作用在前后左右轮上 的制动力不相同,汽车偏转力矩较大,方向稳定性不太好,未经培训的驾驶员很难控
? 汽车智库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:汽车防抱死制动系统设计论文.pdf
链接地址:http://www.autoekb.com/p-7779.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

copyright@ 2008-2018 mywenku网站版权所有
经营许可证编号:京ICP备12026657号-3?

收起
展开