热门搜索:

  • /?45
  • 下载费用:15 金币 ?

BorgWarner_DCTWet_Clutches Friction Mtrls_Gold EN 湿式双离合与摩擦材料.pdf

关?键?词:
BORGWARNER_DCTWET_CLUTCHES FRICTION MTRLS_GOLD EN 湿式双 离合 摩擦 材料
资源描述:
Module X Slide 0 Dual Clutches and Friction Materials Wet DCT Module X Slide 1 Content ? Function of a Dual Clutch ? DC Architecture ? Clutch Sizing ? Thermal Simulation ? Wet versus Dry ? DC Wet Friction Material ? DC Trends and New Developments Slide 2 Dual Clutch Function Module X Slide 3 Principle of Dual Clutch ? 2 clutches, each of them connected to a transmission shaft ? Independent opening and closing of clutches ? Very smooth shifting – no power flow interruption ? Clutches = launch clutches; no TC required Module X Slide 4 Dual Clutch – main components Pistons Actuation of clutches Main hub Distribution of oil flows Return Springs Open the clutches Clutch packs Friction and Separator plates for torque transfer Clutch Hubs Connection to transmission shafts Input hub Connection to engine Module X Slide 5 Actuation of Outer Clutch Pressure Oil Piston Ring OC movement Module X Slide 6 Actuation of Inner Clutch Piston ring IC movement Pressure Oil Module X Slide 7 Cooling of Clutches Lube Oil Slide 8 Architecture of Wet Dual Clutches Module X Slide 9 Traditional architectures Nested vs Parallel Clutch packs Module X Slide 10 Clutch pack architecture nested parallel more efficient use of cooling flow both clutches same thermal capacity shorter axial length smaller outer diameter smaller inertias to be synchronized lower costModule X Slide 11 DualTronic ?PowerSplit Transmission ? 2 single clutches? Driven by a chain ? Small and micro cars ? Compact transmission design ? Lower torque applications (~200Nm) Module X Slide 12 Clutch concepts w/o support with support nested parallel Technically possible but long axial dimension Slide 13 Clutch Sizing Module X Slide 14 Clutch capacity calculation G = M d / p = ? * z f* A Ap* r mean pmax,st = pmax - pspr A Ap = apply piston area M d = ? * z f* p * A Ap* r mean r mean= 2 / 3 * (r 3 f,out– r 3 f,in ) / (r 2 f,out– r 2 f,in ) ? = friction coefficientZ f = number of friction surfacesModule X Slide 15 Odd Clutch 0.000 0.200 0.400 0.600 0.800 1.000 1.200 1.400 1.600 1.800 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000 0 1100 0 1200 0 Drehzahl [U/min] Druck [bar] resultierender Zentrifugaldruck Federdruck Federdruck - res. Differenzdruck Even Clutch -4.000 -3.000 -2.000 -1.000 0.000 1.000 2.000 3.000 4.000 5.000 6.000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 1000 0 1100 0 1200 0 Drehzahl [U/min] Druck [bar] resultierender Zentrifugaldruck Federdruck Federdruck - res. Differenzdruck Clutch hydraulic balancing F c= m * v 2/ r Pressure chamber Balance chamber Slide 16 Thermal Simulation Module X Slide 17 Simulation (hill hold and launch) 2400 U/min 141 °C 4000 U/min @ 5s Module X Slide 18 Simulation (race start) 4500 U/min 142 °C Slide 19 Wet vs Dry Module X Slide 20 Main characteristics Wet Clutch* Dry Clutch** compact size actuation system space demanding cooling lubricant no lubricant high energy inputs possible limited use all vehicle classes limited use pump to circulate cooling oil required ambient air cooled minimal wear high wear*w ith hydraulic piston actuation system **w ith release systemModule X Slide 21 Projects in series production Nm rpm 6000 7000 8000 9000 100 300 500 700 900 1100 BW Wet DCT Wet DCT Dry DCT Slide 22 Friction Material Module X Slide 23 Current Trends in Transmissions and Requirements of Wet Friction Materials TRANSMISSION TRENDS WET FRICTION MATERIAL REQUIREMENTS Higher pressures Low deformation, low lining loss Improved efficiency Smaller pump, lower ATF flow Higher energy facings, higher heat resistance at low lubrication flow Reduce drag loss Improved groove pattern design Reduced size/weight Higher μ , increased heat resistance Higher speeds, higher energies Stable coefficients of friction, no hot spots Continuous slip clutches Good μ V; no shudder; no noise ATF compatibility Inert to chemical and physical interactions with fluids Better consistency of shift quality Better μ PVT stability, positive μ -V slope; reduced variation under various conditions Module X Slide 24 Development of Today’s High Heat Resistance and High Performance Friction Materials FRICTION PROPERTY WET FRICTION MATERIAL CONTROLLING FACTORS μ o, low speed dynamic coefficient Friction material ingredients and ATF additives adsorption μ i, initial dynamic coefficient at high speed Hydrodynamic effects / porosity / compression / roughness Mechanical strength Fiber type, fiber fibrillation, fiber / resin bond strengths Heat resistance More synthetic fibers (aramid, carbon), higher porosity Positive μ -V slope Balance of paper ingredients with ATF additives adsorption and pore size Hot spot resistance Resiliency, oil film Glazing Ingredient compatibility with ATF additives, pore size Compression set Optimization of fibers/, fillers and resins type / amounts Module X Slide 25 ATF additives Friction Material chemical effects Smoothness/uniformity ATF film Lining permeability Compressibility Groove effects Surface Smoothness 0 0.2 0.4 0.6 0.8 1 0 100 200 300 Time (seconds) Torque (Nm) Asperity Torque HydrodynamicTorque Total Torque Controlling Factors for Engagement Torque Curve Slope Time (seconds) Torque (Nm) Lining permeability Compressibility Groove effects Surface Smoothness ATF additives Friction Material Chemical effects Smoothness/uniformity ATF film Module X Slide 26 BW’s Unified Friction System Model R e g i o n I O i l F i l m R e g i o n I IO i l F i l m R e g i o n I I IO i l F i l m R e g i o n I VO i l F i l m R P M D r a g T o r q u e R e g i o n I F u l l O i l S h e e t R e g I I I R i v u l e t S h e e t R e g i o n I V N o O i l S h e e t R e g I I T r a n - s i t i o n Interface Temperature vs Time 0 20 40 60 80 100 0 50 100 150 200 250 300 T i m e - S e c o n d s I n t e r f a c e T e m p e r a t u r e - C S i n g l e E v e n t R P M A p p l y P r e s s u r e Thermoelastic Instability Thermoplastic Instability TEI: No Functional Problem, Not Progressive TPI: Distortion, Progressive Thermal Damage Temperature Prediction ENGAGE_W Model Heat Transfer Coefficients Torque Model Breakaway Coefficient Thermal Degradation Open Pack Drag Effect of friction material permeability on the engagement of a wet clutch as predicted by hydrodynamic models Torque Response Curve Shapes 0 50 100 150 200 250 300 350 400 450 0.0 0.2 0.4 0.6 0.8 1.0 1.2 Time (s) Torque (Nm) Increasing friction material permeability Pressure Speed Permeability Test Set Up Ring Sample 63 mm 82 mm 63 mm 82 mm Fluid: Water Fluid Pressure: 230 kPa Fluid Volume: 292 cm 3 Sample Pressure: 620 kPa Lateral Permeability Set Up Optimized groove pattern for drag loss Determine interface temperature Determine torque characteristics Module X Slide 27 DCT Material Requirements Interface Temperature Deterioration DualTronic ?friction material Conventional friction material Durability Increase surface adsorption for ATF modifiers No glazing Heat Resistance Ingredients Controllability High lining dimensional stability Positive ?-v slope at various pressure and temperature Module X Slide 28 Oil flow effects on temperature Module X Slide 29 ATF Flow Improved Heat Resistance Anti-Shudder Characteristics Internal Structure Surface Texture High Temperature Synthetic Fibers High Porosity Surface Friction Modifier/Filler DCT Material Module X Slide 30 Friction Coefficient after Durability Test Slip Speed [rpm] Friction Coefficient ? Positive m-v slope is desirable Module X Slide 31 Materials and Groove Pattern Conventional - lower porosity - simple groove pattern - standard materials DCT - high porosity, higher elasticity - complex groove pattern - special material composition Module X Slide 32 DCT material launch charactertics “Launch” torque curves 8L/min. oil, high temperature Conventional material DCT material Start of test Start of test End of test End of test Stable, desirable torque shape speed torque Torque vibration Module X Slide 33 Launch Durability 8 L/min. Oil -0.0025 -0.002 -0.0015 -0.001 -0.0005 0 0.0005 0.001 0.0015 3000 5000 7000 9000 11000 13000 Cycles COF Gradient (500 rpm - 200 rpm) Conventional DCT More robust positive ?- v gradient Module X Slide 34 Carbon Woven material not desirable Carbon Woven Sliding Speed Sliding Speed DCT Material ? Low coefficient ? Negative ?-v, potential for shudder ? High lining loss due to compression 0.005 0.011 0.027 0.055 0.110 0.164 0.219 0.274 0.482 0.548 0.712 0.958 1.205 1.643 415 774 1933 2956 0.110 0.115 0.120 0.125 0.130 0.135 0.140 0.145 0.150 0.155 0.160 0.165 0.170 0.175 0.180 FRICTION COEFFICIENT (? SLIDING SPEED (m/s) SURFACE PRESSURE (kPa)Module X Slide 35 Effect on ?-V Characteristics by Creating More ATF Additives Adsorption Sites for Friction Modifiers Mid Pressure (1.0MPa) at 90C 0.00 0.05 0.10 0.15 0.20 0 0.1 0.2 0.3 0.4 0.5 Speed (m/s) Coefficient-of-Friction New Oil / New Material Mid Pressure (1.0MPa) at 90C 0.00 0.05 0.10 0.15 0.20 0 0.1 0.2 0.3 0.4 0.5 Speed (m/s) Coefficient-of-Friction Damaged FM Oil / New Material Mid Pressure (1.0MPa) at 90C 0.00 0.05 0.10 0.15 0.20 0 0.1 0.2 0.3 0.4 0.5 Speed (m/s) Coefficient-of-Friction Damaged FM Oil / Greater Surface Enhancement New Oil Standard Plate Degraded Oil Standard Plate Degraded Oil- Surface Enhanced Plates with more adsorption sitesModule X Slide 36 DCT Material Analyses After Durability Test SEM/EDS X-ray #662 Counts Energy (KeV) Counts Energy (KeV) No ‘Glazing’ No surface accumulation of P.S from degraded ATF Energy Densities (j/mm 2) 5.83 Oil Temperature 100 ° C Speed (rpm) 3,300 Slip time (seconds ) 7 - 10 sec Porous surface Module X Slide 37 Summary ? High temperature launches ? Noise Resistance ? Creep resistance ? Good Durability Enablers New Tribological Characterization Methods Advanced Friction Interface Phenomena Understanding Predictive Methods and Model High Performance DCT Composite Friction Material ? DCT ? Shifting Clutches ? Slipping Clutches Slide 38 Trends – new developments Module X Slide 39 Micro / Small Class Vehicle Main Vehicle Class Micro, Small Max Engine Torque 140 Nm Vehicle Weight 1150 kg Maximum Weight 1650 kg Trailer Weight 1000 kg Vehicle for Analysis Max Transmission Input Torque = 170 Nm Module X Slide 40 High Efficiency DualTronic ? Drag Loss Reduction Optimized Groove Pattern High Precision Cooling Flow Control Reduced Cooling Flow Smaller Pump Size Reduced Leakage High Pressure Actuation Electro Hydraulic System Electric Flow Pump Based on existing DualTronic ? Technology Efficiency Improvement Clutch Controls Module X Slide 41 Efficiency 60% 65% 70% 75% 80% 85% 90% 95% 100% 19% 20% 21% 22% 23% 24% 25% NEDC Engine Efficiency [%] NEDC Transmission Efficiency [%] Transmissions 20% 19% 18% 17% 16% 15% Constant Overall Efficiency Lines MT HEDCT+HP DRY DCT+HP HEDCT WET DCT CVT-WSC CVT-T/C AT (NIC+L/U) AT DCT’s with best overall efficiency from fuel to wheels Module X Slide 42 Wet – High Efficiency – Dry 96,8% 94,6% 92,5% 93,3% 90% 92% 94% 96% 98% 100% WET DCT 2008 HEDCT HEDCT HP ACT. DRY DCT HP ACT. Fuel Consumption [%] New Friction Mat. Red. Leakage High Pre. Flow Ctrl. Pump On-Demand & Flow On-Demand Ratio Limitation Higher Inertia MT Module X Slide 43 Break-up of Losses in NEDC 0 100 200 300 400 500 600 700 800 WET DCT HEDCT HEDCT HP ACT. DRY DCT HP ACT. Energy [kJ] Flow Pump Elec. Act. Pump Elec. Flow + Act. Pump Mech. DCT Inertia Drag (Hyd. + Bearings) Creep Torque Gearbox Losses TCU + SolenoidModule X Slide 44 better fuel economy reduced emissions great performance Thank you! 谢谢!
? 汽车智库所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
0条评论

还可以输入200字符

暂无评论,赶快抢占沙发吧。

关于本文
本文标题:BorgWarner_DCTWet_Clutches Friction Mtrls_Gold EN 湿式双离合与摩擦材料.pdf
链接地址:http://www.autoekb.com/p-7611.html
关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服客服 - 联系我们

copyright@ 2008-2018 mywenku网站版权所有
经营许可证编号:京ICP备12026657号-3?

收起
展开